Diurnal variation in the pharmacokinetics and brain distribution of morphine and its major metabolite

Laura Kervezeea,b, Robin Hartmanb, Dirk-Jan van den Bergb, Johanna H. Meijerb,**, Elizabeth C.M. de Langeb,***,1

a Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
b Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands

\textbf{A B S T R A C T}

The pharmacokinetics and pharmacodynamics of drugs are influenced by daily fluctuations in physiological processes. The aim of this study was to determine the effect of dosing time on the pharmacokinetics and brain distribution of morphine. To this end, 4 mg/kg morphine was administered intravenously to Wistar rats that were either pre-treated with vehicle or tariquidar and probenecid to inhibit processes involved in the active transport of morphine. Non-linear mixed effects modelling was used to describe the concentration-time profiles of morphine and its metabolite M3G in plasma and brain tissue. We found that the concentrations of morphine in the brain and of M3G in plasma depended on the time of day, which could be quantified by a 24-hour rhythm in the efflux of morphine from brain tissue back into the circulation, with the lowest efflux during the two light-dark phase transitions with a difference between peak and trough of 20%. The active processes involved in the clearance of morphine and its metabolite M3G from plasma also showed 24-hour variation with the highest value in the middle of the dark phase being 54% higher than the lowest value at the start of the light phase. Hence, time of day presents a considerable source of variation in the pharmacokinetics of morphine, which could be used to optimize the dosing strategy of morphine.

\textbf{1. Introduction}

Morphine is the most widely used opioid for the treatment of moderate to severe pain, despite the many side-effects associated with its use. Establishing a dosing regimen that results in adequate analgesia and minimal adverse side-effects is crucial, but this remains a challenge due to the high degree of intra- and interindividual variability associated with its pharmacokinetics and pharmacodynamics (Sverrisdóttir et al., 2015). Time of day presents a considerable source of variation in the pharmacokinetics and pharmacodynamics of a wide variety of drugs due to daily rhythms in physiological processes (Dallmann et al., 2014).

There are several indications that time of day influences morphine’s effect in both humans and animal models (Potts et al., 2011; Junker and Wirz, 2010; Bornshein et al., 1977; Cui et al., 2005; Lutsch and Morris, 1971; Morris and Lutsch, 1967; Yoshida et al., 2003; Yoshida et al., 2005; Kavaliers and Hirst, 1983; Oliverio et al., 1982; Dohoo, 1997a; Rasmussen and Farr, 2003). However, the physiological mechanisms that underlie these variations in morphine-induced analgesia are unknown. To gain a more structured overview of the effect of time of drug administration on the therapeutic effect of morphine, it is essential to first determine 24-hour variation in both the plasma and brain pharmacokinetics of morphine. Although the effect of time of administration on the exposure to morphine has previously received some attention (Gourlay et al., 1995; Dohoo, 1997b), these studies neither determined the 24-hour variation in the different pharmacokinetic parameters of morphine, nor did they address the 24-hour variation in its distribution to the brain, morphine’s main site of action.

The concentration of morphine in blood and subsequently in the central nervous system depends on several processes, such as metabolism by UDP glucuronosyl transferase (UGT) 2B7 in the liver (De Gregori et al., 2011; Somogyi et al., 2007) and efflux transport by specialized transporters including P-glycoprotein and multi-drug resistance proteins (mrps) (Sverrisdóttir et al., 2015; Thompson et al., 2000; Tunblad et al., 2003; Xie et al., 1999). It has been shown that these physiological processes show 24-hour variation (Dallmann et al., 2014; Zhang et al., 2009; Kervezee et al., 2014).

1 Correspondence to: J.H. Meijer, Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, Mailbox S5-P, 2300 RC Leiden, The Netherlands.
** Correspondence to: E.C.M. de Lange, Division of Pharmacology, LACDR, Leiden University, PO Box 9502, 2360 RA Leiden, The Netherlands.
1 E-mail addresses: J.H.Meijer@lumc.nl (J.H. Meijer), ecmdelange@lacdr.leidenuniv.nl (E.C.M. de Lange).
3 These authors share senior authorship.

http://dx.doi.org/10.1016/j.ejps.2017.05.048
Received 19 May 2017; Accepted 22 May 2017
Available online 27 May 2017
0928-0987/ © 2017 Published by Elsevier B.V.
To determine 24-hour variation in the pharmacokinetic parameters of morphine, we used a study design in which morphine is intravenously administered to rats at six time-points during the 24-hour period combined with a pharmacokinetic modelling approach. Results from this study enhance our understanding of the processes that underlie the observed time-of-day dependent analgesic effect of morphine.

2. Methods & materials

2.1. Animals

Male Wistar WU rats (Charles River, the Netherlands) were housed in groups for at least twelve days under standard environmental conditions (humidity 60%, ambient temperature 21 °C) with food (Laboratory chow, Hope Farms, Woerden, The Netherlands) and water ad libitum. After surgery, animals were kept individually until the end of the experiment under otherwise similar conditions. The animal procedures were performed in accordance with the Dutch law on animal experimentation and were approved by the Animal Ethics Committee of the Leiden University (protocol number DEC14041).

2.2. Study design

Cannulation of the femoral artery and vein was performed as described previously (Westerhout et al., 2012). Anesthesia was induced and maintained by respectively 5% and 1–2% isoflurane throughout the surgical procedures. Experiments were conducted seven days after surgery and started at one of six different time points (t = 0 at either Zeitgeber time (ZT) 0, 4, 8, 12, 16 or 20, with ZT12 defined as the moment that lights are turned off). Experiments that took place during the dark phase were conducted under dim red light. At t = −25 min, taridriac (15 mg/kg; XR9576 from Avant pharmaceuticals, London, UK, in 5% glucose) or vehicle (5% glucose) was administered for 10 min, followed by administration of probenecid (150 mg/kg; Sigma-Aldrich, Zwijndrecht, the Netherlands, in 5% NaHCO3) or vehicle (5% NaHCO3) for 10 min. Half of the animals received a combination of taridriac and probenecid (inhibitor-treated group); the other half received the two vehicle solutions (vehicle-treated group). At t = 0, morphine HCl (4 mg/kg in saline; Pharmachemie BV, Haarlem, the Netherlands) was administered for 10 min. The selection of this dose was based on previous research in our laboratory (Groenendaal et al., 2007). All drugs were administered intravenously using a syringe pump (Pump 22 Multiple Syringe Pump, Harvard Apparatus, Holliston, MA, USA). Plasma samples (150 μL) were collected at t = −5, 10, 20, 30, 45, 60, 90 and 120 min as well as at t = 180 and/or 240 min, depending on when the experiment was terminated and stored at −20 °C until further analysis. At either t = 120, 180 or 240 min, animals were euthanized by an overdose of Nembutal, transcardially perfused and decapitated. Brain tissue was removed, immediately placed on ice and subsequently stored at −80 °C until further analysis.

2.3. SPE-LC-MS/MS analysis

Morphine and morphine-3-glucuronide (M3G) were measured in plasma and brain tissue using liquid chromatography tandem mass spectrometry (LC-MS/MS) (Methods S1).

2.4. Data processing

Samples below LLOQ (≤ 1%) were marked in the data set but were retained, as described previously (Reizer et al., 2015). Concentrations (ng/mL) were converted to nanomol/mL using the molecular weight of morphine. HCl (321.8 g/mol) and M3G (free base) (461.47 g/mol). Based on protein binding values of morphine in rats that have been reported previously (Bickel et al., 1996; Boström et al., 2008; Letrent et al., 1999; Stain-Textier et al., 1999; Tunblad et al., 2004), an unbound fraction of 70% was used. The degree of plasma protein binding of M3G is very low (unbound fraction of 93% (Bickel et al., 1996)) and was not taken into account in further analysis.

2.5. Population pharmacokinetic model development

A population pharmacokinetic model was developed to describe the concentration-time profiles of morphine and M3G in plasma and in morphine brain tissue using nonlinear mixed effects modelling (NONMEM 7.3 (Beal et al., 2009)) in combination with Pirana (v2.8.2), PsN (v3.7.6), Xpose (v4) and R (v3.1.2) (Keizer et al., 2013).

To compare the fit of nested models, the likelihood ratio test was used, under the assumption that the difference in −2 log-likelihood is χ² distributed with degrees of freedom (d.f.) determined by the number of additional parameters in the more complex model. Hence, a decrease in Objective Function Value (OFV) of at least 3.84 points (p-value < 0.05) with one additional parameter was considered to provide a significantly better fit of the data compared to its parent model. The fit of non-nested models were compared using the Akaike Information Criterion (AIC) (Mould and Upton, 2013). The first-order method with conditional estimation and interaction (FOCEI) and the ADVAN6 sub-routine were used throughout model development. Model selection was based on OFV, precision and plausibility of parameter estimates, graphical evaluation of the goodness of fit and visual predictive checks (VPC).

Interanimal variability was described using an exponential model. Additive, proportional and combined error models were considered to describe the residual variability (Mould and Upton, 2013). Pre-treatment with probenecid and taridriac was assumed to inhibit all active transport processes. Therefore, this effect was assessed on clearance parameters as follows:

$$P = \hat{\theta}_{\text{passive}} + \hat{\theta}_{\text{active}} \times (1 - \text{TRT})$$

where \(\hat{\theta}_{\text{passive}}\) is the passive component of the clearance parameter, \(\hat{\theta}_{\text{active}}\) Is the active component of the clearance parameter and TRT is the treatment group (0 for vehicle-treated animals; 1 for inhibitor-treated animals). The effect of the inhibitors on other (non-clearance) parameters was assessed as follows:

$$P = \hat{\theta}_{\text{INH \cdot TRT}}$$

where \(\hat{\theta}_{\text{INH}}\) is the fractional change in parameter \(\theta\) in the presence of inhibitor treatment.

A sequential approach was used to develop the population PK model. Firstly, different structural models were considered (different number of peripheral compartments, linear or Michaelis-Menten clearance) to describe morphine and M3G concentrations in plasma. The volume of the M3G compartment was set equal to the volume of the central morphine compartment to yield a structurally identifiable model. In the second step, the morphine concentrations in brain tissue were added to the data set and the PK model was extended to describe the concentration profile in brain tissue. Lastly, the effect of time of day on the pharmacokinetic parameters was assessed. As an exploratory approach, the distribution of conditional weighted residuals with interaction (CWRESI) over time was investigated per treatment group. Subsequently, it was investigated whether the model fit could be improved by describing one or more parameters by a sinusoidal function with a principal period of 24-h and one or more harmonic terms (Eq. (3)).

$$P = \hat{\theta}_{\text{Mesor}} + \sum_{n=1}^{N} \hat{\theta}_{\text{Amplitude,n}} \cos\left(\frac{2\pi n (t - \hat{\theta}_{\phi,n})}{24}\right)$$

In this equation, \(\hat{\theta}_{\text{Mesor}}\) represents the rhythm-adjusted mean value of the parameter, \(N\) is the total number of harmonics included in the model, \(\hat{\theta}_{\text{Amplitude,n}}\) is the amplitude of the \(n\)th harmonic, \(\hat{\theta}_{\phi,n}\) is the acrophase (time of peak in minutes after onset of light period) of the \(n\)th harmonic.
harmonic and \(t \) is the time with \(t = 0 \) defined as the onset of the light period.

2.6. Simulations

Two dosing regimens were simulated using the package deSolve (v1.11) in R: 1) a single 10 min. Intravenous infusion of 4 mg/kg morphine to a rat of 250 g with dosing at 0, 4, 8, 12, 16 and 20 h after onset of the light period and 2) a continuous infusion of 0.5 mg/kg/h to a rat of 250 g for 24 h starting at 4 and 16 h after the onset of the light period.

3. Results

3.1. Morphine and M3G pharmacokinetics in plasma

Data from three animals were missing due to complications during surgery and data from four animals were missing due to difficulties with the cannulas during the experiment, so data from 89 animals (mean weight ± standard deviation: 269 ± 29 g) were available for pharmacometric analysis. Table 1 shows the number of animals per treatment group. Morphine and M3G concentrations in plasma are shown in upper and middle panels of Fig. 1.

The concentration-time profiles of morphine were described by a model consisting of a central compartment, one peripheral compartment and linear clearance from the body. To account for the difference in morphine pharmacokinetics between vehicle-treated animals and inhibitor-treated animals, the clearance of morphine from the body (CL₁0) was split into an active and a passive component as described in Eq. (1), resulting in a significant improvement of the model fit (\(\Delta OFV = 208, p < 0.01, 1 \text{ d.f.} \)) and reducing the interanimal variability on CL₁0 from 123% to 23%.

It was found that the conversion of morphine to M3G showed concentration-dependent saturation that could be described by Michaelis-Menten kinetics (\(\Delta OFV = 402, p < 0.01, 1 \text{ d.f.} \)). Subsequent incorporation of interanimal variability and the effect of inhibitor treatment resulted in a model with interanimal variability included on CL₁0, the clearance of M3G from plasma (\(CL_{M3G} \)), intercompartmental clearance (\(Q_{2} \)) and the maximum conversion rate of morphine to M3G (\(V_{\text{max}} \)).

3.2. Morphine pharmacokinetics in brain tissue

Morphine concentrations in brain tissue in vehicle-treated animals and inhibitor-treated animals at each of the six dosing times are shown in the lower panels of Fig. 1. The plasma model was extended to describe these concentration-time profiles. The base model, consisting of one brain compartment and inter-compartmental clearance (\(Q_{\text{B}} \)) to describe the transport to and from plasma, described the brain concentrations poorly and showed high residual unexplained variability (128%). In subsequent modelling steps, it was found that a model that described the brain concentrations as deep brain concentrations that was indirectly linked to the central plasma compartment by a transit compartment referred to as the extra-cellular fluid (ECF) compartment, known as an important compartment for morphine distribution into the brain (Bouw et al., 2000), could best describe the brain concentrations data. In the final brain model, drug transport between the deep brain compartment and the ECF compartment were described by a single clearance parameter and the flow between the ECF compartment and the plasma compartment by an influx parameter (\(Q_{\text{PL-ECF}} \)) and an efflux parameter that was split into a passive (\(Q_{\text{ECF-PL,passive}} \)) and an active (\(Q_{\text{ECF-PL,active}} \)) component (Fig. 2).

Table 1

<table>
<thead>
<tr>
<th>Dosing time</th>
<th>No. of vehicle-treated animals</th>
<th>No. of inhibitor-treated animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>42</td>
</tr>
</tbody>
</table>

Fig. 1. Concentration profiles of morphine (MOR) in plasma (upper panels), M3G in plasma (middle panels) and MOR in brain tissue (lower panels) in vehicle-treated (left) and inhibitor-treated animals (right) after different dosing times.
The volumes of the ECF and deep brain compartment were fixed to 1, because these values could not be estimated with sufficient precision. This model described the central trend and the variability in the brain concentrations well (Fig. 3) and the residual unexplained variability reduced to 13%.

3.3. Twenty-four hour variation in morphine pharmacokinetics

The distribution of CWRESI of the morphine concentrations in brain of both vehicle and inhibitor-treated animals showed clear time-of-day dependent bias with peaks around the light-dark transitions (Fig. 4A). Inclusion of a two-harmonic cosine function with a 24-hour and 12-hour component on the efflux of morphine from the ECF compartment to plasma (Q_{ECF-PL}) significantly improved the fit of the model (ΔOFV = 16, $p < 0.005$, 4 d.f.). This cosine function adequately removed this bias (Fig. 4B), provided a better fit compared to implementation of a two-harmonic cosine function on the influx parameter (Q_{PL-ECF}) (AIC = -2.7) and reduced the residual unexplained variability from 13.1% to 11.9%. The 24-hour and 12-hour components of this cosine function had a peak at 22.8 h and 5.9 h after lights on and relative amplitudes of 4.1% and 6.3%, respectively (Fig. 5A).

The CWRESI of morphine and M3G in plasma did not reveal a time-of-day dependent bias (Fig. 4C and E). Nevertheless, inclusion of the same two-harmonic cosine with a 24-hour and 12-hour component on CL$_{M3G,active}$ and CL$_{10,active}$ significantly improved the fit of the model (ΔOFV = 28, $p < 0.005$, 4 d.f.) and minimally affected the distribution of CWRESI over time-of-day (Fig. 4D and F). The 24-hour and 12-hour components of this cosine function had a peak at 18 h and 7.6 h after lights on and relative amplitudes of 13% and 12.5%, respectively (Fig. 5B and C).

In the final model (Run8202), the cosine function on Q_{ECF-PL} was combined with the cosine functions on CL$_{M3G,active}$ and CL$_{10,active}$. This model described the observed concentrations well (Fig. 6). Parameter estimates from this model and from a bootstrap (500 runs) are shown in Table 2.

3.4. Simulations

The final model was used to perform simulations to show the impact of dosing time on the concentration profiles of morphine and M3G. Morphine concentrations in plasma after a single intravenous infusion were minimally affected by dosing time, while morphine concentrations in brain tissue were influenced by dosing time with the highest concentrations attained 12 h after the onset of the light period (Fig. 7A). M3G concentrations were lowest and highest after administration at 4 and 20 h after the onset of the light period, respectively. During a continuous infusion at steady-state, simulations indicate that morphine and M3G concentrations in plasma and morphine concentrations in brain fluctuate during the 24-hour period (Fig. 7B).
Fig. 4. Distribution of CWRESI vs time of dose in vehicle-treated (dark symbols) and probenecid (PRB) – tariquidar (TQD) treated (light symbols) animals. A, C, E: CWRESI distribution in the model without cosine functions of morphine concentrations in brain (A) and in plasma (C) and of M3G concentrations in plasma (E). B: CWRESI distribution in the model with a 24 + 12-hour cosine included on QECF-PL of morphine concentrations in brain. D and F: CWRESI distribution in the model with a 24 + 12-hour cosine function included on CL10,active and CLM3G,active of morphine concentrations in plasma (D) and of M3G concentrations in plasma (F).

Fig. 5. Shape of the cosine functions included on QECF-PL (left), CL10,active (middle) and CLM3G,active (right).

Fig. 6. Measured versus population predicted (PRED; upper panels) and individual predicted (IPRED; lower panels) concentrations of morphine (MOR) in plasma (left, red), M3G in plasma (middle, green) and MOR in brain tissue (right, blue) of the final model. Dark coloured symbols represent vehicle-treated animals; light coloured symbols represent inhibitor-treated animals. Dotted line: line of unity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Successful).

Middle of the dark phase. These findings indicate that dosing time should be taken into account in the optimization of morphine's dosing regimen.

Our results show that inhibition of active transport processes by probenecid and tariquidar alters both the systemic pharmacokinetics and the brain distribution of morphine. With regard to systemic pharmacokinetics, inhibition of active transport reduced the systemic clearance of morphine, increased its intercompartmental clearance and lowered the maximal conversion rate of morphine to M3G. Because it was previously found that P-gp inhibition does not influence morphine concentrations in plasma (Xie et al., 1999; Groenendaal et al., 2007; Letrent et al., 1999; Letrent et al., 1998), while probenecid treatment has been reported to reduce systemic morphine clearance and the formation of M3G in rats (Tunblad et al., 2003), we hypothesize that the systemic effects we observed are due inhibition of multiple multidrug resistance proteins (mdrps) in the kidney and liver (Dresser et al., 2001; Zelcer et al., 2001; Zelcer et al., 2005; Lee and Kim, 2003).

Active transport inhibition also altered the brain distribution of morphine. Brain concentrations could be best described by a model in which a "deep brain fluid" compartment was linked to the central plasma compartment by an extra-cellular compartment fluid (ECF) compartment. An additional transport component that was absent inhibitor-treated animals.

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Equation</th>
<th>0</th>
<th>Estimate</th>
<th>RSE</th>
<th>Bootstrap median (90% P.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL0 (ml/min)</td>
<td></td>
<td>CL0 = (\theta_{CL0,passive} + CL_{10,active} \ast (1 - TRT))</td>
<td>(\theta_{CL0,passive})</td>
<td>4.97</td>
<td>4.4%</td>
<td>4.98 (4.63-5.35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With (CL_{10,active} = \theta_{max} \ast (1 + \theta_{M3G,active} \ast \cos(2\pi \ast (t - \theta_{phase,24}) / 1440)) + \theta_{amp,12} \ast \cos(2\pi \ast (t - \theta_{phase,12}) / 720)))</td>
<td>(\theta_{max} \ast \cos(2\pi \ast (t - \theta_{phase,24}) / 1440)) + \theta_{amp,12} \ast \cos(2\pi \ast (t - \theta_{phase,12}) / 720)))</td>
<td>8.24</td>
<td>16.7%</td>
<td>8.19 (6.12-10.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{amp,24}) (%)</td>
<td>12.3</td>
<td>46.3%</td>
<td>14.5 (5.61-25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{phase,24}) (min)</td>
<td>1070</td>
<td>11.8%</td>
<td>1053 (839-1240)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{amp,12}) (%)</td>
<td>12.6%</td>
<td>42%</td>
<td>13.3 (5.17-22.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{phase,12}) (min)</td>
<td>461</td>
<td>8.6%</td>
<td>463 (384-547)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{DLR})</td>
<td>109</td>
<td>16.3%</td>
<td>109 (80.6-144)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{DLR,INT})</td>
<td>11.0</td>
<td>8.9%</td>
<td>11.0 (9.25-12.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_{DLR}) (min)</td>
<td>508</td>
<td>4.9%</td>
<td>505 (454-537)</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

In this study, we have been able to characterize the effect of dosing time on processes that are involved in the distribution, metabolism and excretion of morphine through the development of a population pharmacokinetic model. By inhibiting P-gp and probenecid-sensitive transporters, the active and passive processes involved in the distribution and clearance of morphine could be investigated separately (Tunblad et al., 2003; Xie et al., 1999; Groenendaal et al., 2007; Letrent et al., 1999; Bourasset and Scherrmann, 2006). We find that the concentration profiles of morphine in brain tissue and of its metabolite M3G in plasma are affected by time of day. We show that the transport of morphine from brain tissue back into the circulation shows a characteristic 24-hour rhythm with the lowest efflux during the light-dark phase transitions. The active processes involved in the clearance of morphine and M3G from plasma also show 24-hour variation with the peak in the middle of the dark phase. These findings indicate that dosing time should be taken into account in the optimization of morphine's dosing regimen.
was identified on the transport of morphine from the ECF compartment to plasma. This supports previous findings that morphine is subject to active efflux transport mediated by P-gp and probenecid-sensitive transporters (Tunblad et al., 2003; Xie et al., 1999; Groenendaal et al., 2007; Letrent et al., 1999; Bourasset and Scherrmann, 2006).

Our findings indicate that several processes involved in morphine pharmacokinetics show 24-hour variation. It was previously shown in cancer patients that the maximal concentration (Cmax) and the area under concentration-time profile (AUC) at steady state are higher at 18:00 than at 10:00 and 14:00 after oral administration (Gourlay et al., 1995). In the present study, we have been able to quantify the relative contribution of the processes involved in the distribution, metabolism and elimination of morphine more precisely through the use of six dosing times and the development of a population pharmacokinetic model. We find that the active component of the systemic clearance of morphine and M3G show 24-hour variation with a difference of 54% between the lowest value and the highest value. A physiological explanation of these findings could be the observation that the expression of various probenecid-sensitive transporters show 24-hour variation in the kidney (Gachon and Fisrov, 2011). However, future research to elucidate the underlying mechanisms is warranted.

Furthermore, we find that the transport of morphine from the brain to the blood shows a 12-hour rhythm with the lowest values at the transitions of the light/dark phase. This rhythm could be described by a 24-hour and 12-hour sinusoidal function on this parameter with a difference between the highest and lowest efflux of 20%. Importantly, the inclusion of this function in the model resolved a time-of-day dependent bias observed in the conditionally weighted residuals. In a previous study we found that the efflux of the P-gp substrate quinidine from the brain to plasma is more than two-fold higher during the dark phase compared to the light phase in the presence of functional P-gp transport, but not when P-gp transport is blocked (Kervezee et al., 2014). In the present study, we do not find this P-gp dependent effect for morphine. While quinidine is a selective P-gp substrate, morphine has more complex transport mechanisms across the BBB, which is not only affected by P-gp but also by probenecid-sensitive transporters. The daily variation in P-gp activity may be (partly) counterbalanced by a differentially-phased variation in probenecid-sensitive transporters. Hence, multiple mechanisms likely give rise to the 12-hour rhythm in the transport of morphine from the brain to blood.

We performed simulations of a single intravenous dose and of a continuous infusion regimen to visualize the effect of the daily rhythmicity in morphine pharmacokinetics on the concentration-time profiles in plasma and brain tissue. Although morphine concentrations in plasma are minimally affected by dosing time, metabolite concentrations in plasma and morphine concentrations in brain tissue do depend on the time of day. This finding has several important implications: it indicates that time of day can be a substantial source of variation in the pharmacokinetics and, possibly, the pharmacodynamics of morphine when it is not properly accounted for, but also that these systematic variations could be exploited to optimize morphine’s dosing regimen.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgments

The authors would like to thank Ming Liu for her help with the analysis of the samples. This research was supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs (project number: 12190). The funding source had no involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Appendix A. Supplementary methods & materials

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ejps.2017.05.048.

References
