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Figure 2.  Impact of aging on different levels of organization. (A) The amount of activity is reduced as aging progresses. Double 
plotted wheel-running activity of a young (middle) and old animal (right) are shown. C57/bl6 mouse in running wheel is shown 
on the left. (B) The amplitude of the electrical activity rhythm in the aged suprachiasmatic nucleus (SCN) (right) is reduced by 
about 50% compared with young SCN (middle). Nissl-stained hypothalamic slice containing the SCN (circle) is shown on the 
left. (C) Aging changes neuronal network properties in the SCN. The distribution of the neuronal activity of subpopulations is 
more dispersed in old SCN (right) compared with recordings form young SCN slices (middle). The left panel shows an image 
of SCN neurons in a slice loaded with the Ca2+ indicator dye Fura-2 as one method to test network interactions (red lines 
symbolize putative connections). (D) Single cell properties are modified in aging. For instance, the resting membrane potential 
(V

m
) recorded from neurons of aged SCN (right) does not reach the hyperpolarized night values as seen in young animals 

(middle). The white and black bars on top of the graphs represent the day and night, respectively, of the light regime prior 
to the recording. A photograph of a single SCN neuron in culture is shown on the left. (E) Several circadian controlled ionic 
conductances are modified in aging. A-type transient K+ currents (I

A
) that lose their rhythmicity in aging have been shown 

as an example (right). A sketch of some of the known clock-controlled channels is depicted on the left. (F) Clock genes and 
their related proteins are down regulated (Bmal1) or up regulated (Per2) by aging. Image of bioluminescence recording of Per2 
expression in organotypic SCN slices (left). Sketch of circadian rhythms in Per2 and Bmal1 demonstrate age-associated changes in 
gene expression. 3V = third ventricle, OC = optic chiasm. Data in A, B, C, and E adapted from Farajnia and others (2012).
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(Wyse and others 2010). Hybrid mice (a cross between 
two inbred mouse strains) with intrinsic period close to 
24 hours had a significantly increased longevity com-
pared with littermates with longer or shorter periods 
(Libert and others 2012). A transgenic mouse model with 
increased life span compared to the wild-type littermates, 
showed an intrinsic period closer to 24 hours compared 
with wild-type. This period did not show alterations in 
the course of aging (Gutman and others 2011). Decreased 
caloric uptake in this model complicates the interpreta-
tion of the results, but the combined evidence of the stud-
ies support the idea that a stable period close to 24 hours 
throughout life will increase longevity. For humans this 
implies that we are fairly close to an optimum with an 
age-independent period of close to 24 hours (Czeisler and 
others 1999). The lesson to be learned from animal mod-
els, however, is that any clock disturbances that will alter 
our circadian period (e.g., medications) could have detri-
mental influence on our health and life span.

For the SCN to function as a reliable chronometer pre-
dicting time for the organism, it needs to be synchronized 
(or entrained) to the environmental cycles. The strongest 
time cue or zeitgeber in the environment is the daily 
changes of light and darkness. This light information is 
processed and relayed to the SCN by photosensitive reti-
nal ganglion cells using glutamate and pituitary adenylate 
cyclase–activating peptide (PACAP) as neurotransmitters 
(Hannibal and others 2002). The retinorecipient SCN 
neurons are activated by light depolarizing membrane 
potential and increasing action potential frequency. This 
activation leads to an increase of intracellular calcium 
concentration that can influence the expression of genes 
involved in the molecular machinery of rhythm genera-
tion causing a phase shift of the rhythm (Antle and others 
2009). The phase-shifting capacity of light is restricted to 
the night time and corrects deviations of the phase of the 
internal clock from the phase of the external light–dark 
cycle. The ability to synchronize and reset phase is ham-
pered in aged humans (Klerman and others 2001) and 
rodents (Benloucif and others 1997; Farajnia and others 
2012; Valentinuzzi and others 1997; Zhang and others 
1996) as shown for behavioral, electrical, and molecular 
rhythms in the SCN. Aging can influence the resetting 
capacity of the clock at many levels from the light per-
ception in the eye to the molecular level in SCN neurons. 
The light intensity required to achieve comparable 
entrainment can be 10 times (1 log unit) higher in the 
elderly compared with young subjects (Turner and 
Mainster 2008), which is similar in nonhuman primates 
(Gomez and others 2012). Age-dependent reduction of 
light transmission of lens and pupil alone can amount to 
90% in the elderly (Turner and Mainster 2008). In rodents, 
an aging induced decline in photosensitive ganglion cells 
seems to account for most of the reduction of circadian 
photoreception in the eye (Lupi and others 2012). 

Evidence of age-associated changes in SCN glutamate 
receptor function (Biello 2009) and modulation (Duncan 
and others 2000) points to a major contribution of the 
SCN to age-related deficit in entrainment. Recently, it 
was suggested that the observed reduction in phase shift-
ing capacity in the old clock is in part due to a modified 
neuronal network with a wider distribution of phases of 
single neurons activity pattern (Meijer and others 2012). 
The latter seems to contribute to low amplitude rhythms 
and reduction in light-induced phase response as will be 
discussed below.

Impact of Age on Suprachiasmatic 
Nucleus Function

The bilaterally organized nuclei of the SCN consist of a 
neuronal network of about 20,000 cells generating a cir-
cadian rhythm in electrical activity which peaks in the 
middle of the day. Molecular (Dibner and others 2010) 
and cytosolic clocks (O’Neill and Reddy 2012) suppos-
edly interact to accomplish a circadian modulation in cell 
physiology and neuronal excitability. These intracellular 
clocks control a variety of ionic conductances, which 
then affect neuronal activity (Fig. 3; Brown and Piggins 
2007). The result is a depolarization of the membrane 
potential and an increase in action potential frequency 
during the day, which lasts about 4 hours in most SCN 
neurons (Vanderleest and others 2007). One major tasks 
of the neuronal network of the SCN is the arrangement of 
phases of these single unit electrical patterns to construct 
an ensemble waveform that unambiguously encodes 
dawn, dusk, and day-length (Vanderleest and others 
2007). The mechanisms of phase (re-)setting and syn-
chronization within the SCN network are not fully under-
stood yet, but the neurotransmitters vasoactive intestinal 
peptide (VIP; Colwell and others 2003) and GABA 
(Albus and others 2005) play an important role.

Given the central role of the SCN in the circadian con-
trol of behavior and physiology, it can be expected that 
many age-related deficits in the circadian system are 
based on altered physiology and function within this cen-
tral clock. Indeed, implantation of fetal SCN tissue in old 
animals partially restored circadian function in hamsters 
(Van Reeth and others 1994) and rats (Cai and others 
1997) and can even lead to an increase in longevity in 
hamsters (Hurd and Ralph 1998).

Amplitude of the Suprachiasmatic Nucleus 
Rhythms

One of the hallmark features of the aged clock is the reduc-
tion in amplitude of the circadian rhythms in physiology 
and behavior, as mentioned above. Recordings of the elec-
trical activity rhythm in the aged SCN of mice found a sig-
nificant reduction of amplitude of this important output 
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signal by about 50% (Fig. 2B; Farajnia and others 2012; 
Nakamura and others 2011). Obviously, one potential 
explanation for the reduction in amplitude of the output 
signal could be a loss of SCN neurons due to age-related 
neurodegeneration. However, most studies found no sig-
nificant difference in the overall cell count within the SCN 
of aged mice (Miller and others 1989) or rats (Roozendaal 
and others 1987), compared with young animals. Aging 
does lead to a decrease in subpopulations of SCN neurons 
expressing VIP in rats (Chee and others 1988) and humans 
(Zhou and others 1995) and arginine vasopressin in rats 
(Roozendaal and others 1987). The loss of arginine vaso-
pressin neurons in the SCN of humans was also described 
but only occurs from an age of 80 years or older (Swaab 
and others 1985). These findings indicate that the reduc-

tion in SCN output may be caused by age-dependent alter-
ations in specific neurotransmitter signaling.

The age-related decrease in amplitude of the circadian 
clock output may to a great extent be the result of reduced 
synchronization between SCN neurons as a result of 
changes in neurotransmitter signaling (Box 1). The elec-
trical activity patterns of SCN neurons usually cluster 
around midday in young mice. SCN multiunit activity 
recording in old mice revealed a wider phase distribution 
and also an additional cluster of cells active during the 
night, in antiphase (180°) to the main group during the 
day (Farajnia and others 2012). This results in a reduction 
in the amplitude of the 24-hour rhythm and an increase in 
neuronal activity during the night, the phase of the circa-
dian cycle where electrical activity should be low.

Figure 3.  Age-related changes in circadian controlled ionic currents in the suprachiasmatic nucleus (SCN). The clock-controlled 
fast delayed rectifier (FDR), A-type K+ currents (I

A
), large conductance Ca2+ activated K+ currents (BK) and voltage-dependent 

Ca2+ currents (I
Ca

) modulate membrane excitability in a circadian manner. In young mice, this results in a higher frequency 
of action potential during the day compared to the night (upper panels). A yet to be identified K+ current (I

K
) contributes to 

regulation of membrane potential, which is more depolarized during the day as compared with the night. In the course of aging 
(lower panels), membrane potential does not reach the hyperpolarized night values found in young animal. In addition, the 
circadian modulation of I

A
 and FDR currents is diminished, leading to a blunted rhythm in electrical activity. Consequently the 

amplitude of the multiunit activity (MUA) rhythm of the SCN is reduced in aged animals. The thickness of the arrows illustrates 
the magnitude of the current that passes through channels (gray arrows mark conductances yet to be studied in aged SCN).
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Box 1.  Modeling the suprachiasmatic nucleus neuronal 
network in aging.

Most, if not all the 20 000 neurons in the SCN exhibit an 
endogenously rhythmic firing pattern with a period of 
approximately 24 hours (Honma and others 1998). 
Recordings from SCN cells in culture have shown the auton-
omous nature of rhythm generation (Welsh and others 
1995). When dispersed in low density the largely uncoupled 
individual cells show high variability in their endogenous 
periods, whereas communication among neurons within the 
SCN neuronal network reduces this variability (Herzog and 
others 2004). This indicates that phase synchrony is enhanced 
by intercellular coupling, leading to a reinforcement of 
rhythm amplitude at the population level (Welsh and others 
2010).

The SCN has the ability to synchronize or entrain its 
endogenous rhythm to the external 24-hour light–dark 
cycle. When entrained, the SCN produces a rhythmic pat-
tern in electrical activity with a peak at midday and a trough 
at midnight (Brown and Piggins 2007). This sinusoidal-shaped 
activity pattern of the ensemble differs from the much 
shorter activity pattern of the single cells and is explainable 
by a specific phase distribution of the individual neuronal 
activity patterns. Mathematical modeling studies have indi-
cated the significance of the phase distribution (Rohling and 
others 2006). If the firing patterns of all cells would be evenly 
distributed in phase over the 24-hour period, no overall 
SCN rhythm would be present. Only when more cells are 
active during midday than during midnight and when the cells 
are not fully synchronized, a rhythmic sinusoidal-like pattern 
can emerge at the population level (Rohling and others 2006; 
Vanderleest and others 2007). These conditions reflect the 
situation in young mammals that show robust, high-ampli-
tude rhythms (panel A). In the figure, each circle represents a 
neuron and the symbol inside the circle denotes whether 
the cell is rhythmic or not. Each line between two circles 
represents a connection between the neurons. The thickness 
of the lines represents the strength of the connection. In the 
right panel, the corresponding activity patterns of the indi-
vidual cells (in red) and of the population (in black) is shown. 
The phases of the single neuron activity patterns follow a 
Gaussian distribution. For young mammals, the network is 
intact and all cells express a circadian rhythm.

The degree of synchronization of the cellular oscilla-
tors is not static, but flexible. A change of environmental 
lighting conditions, such as a change in photoperiod, 
causes the network to reorganize its phase synchroniza-
tion (Johnston 2005; Rohling and others 2006; Schaap and 
others 2003; Vanderleest and others 2007). Also, in aged 
animals, changes in synchronization occur. At the popula-
tion level, the aged SCN shows a broad, low-amplitude 
peak in electrical activity (Farajnia and others 2012; 
Nakamura and others 2011). As compared with the higher 

amplitude rhythms for young animals, the network of aged 
animals is less synchronized.

Three different mechanisms for aging can be explored 
with computational approaches (methods described in 
Rohling and others 2006). The first mechanism that may play 
a role in aging is a weakening of the connections between 
the neurons (panel B). This leads to a more desynchronized 
phase distribution of neurons, resulting in a wide SCN activ-
ity pattern with low amplitude. The second mechanism is 
cell loss (panel C), which will result in a small decrease in 
rhythm amplitude, even if the connections between the 
remaining cells remain intact. Finally, it is possible that single 
cells may lose their rhythms. These cells will consequently 
have a constant activity level throughout the 24-hour cycle, 
resulting in a higher trough of the SCN rhythm (panel D). 
Possibly, all three mechanisms occur with aging, resulting in 
a wider activity pattern with lower amplitude and higher 
trough compared with the pattern in young animals.
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The neurotransmitters VIP and GABA, which contrib-
ute to the synchronization within the SCN neuronal net-
work, are both affected by aging. The expression level 
and the amplitude of circadian modulation of VIP mRNA 
(Kawakami and others 1997) and VPAC2 receptor mRNA 
(Kallo and others 2004) were reduced in the course of 
aging. The number of GABAergic synaptic terminals in 
the SCN are diminished by 26% in old mice compared 
with values found in young adults (Palomba and others 
2008). Patch-clamp recordings in hypothalamic slices 
showed that GABAergic postsynaptic currents are 
reduced in frequency (Nygard and others 2005) and 
amplitude (Fig. 2C; Farajnia and others 2012) in SCN 
neurons of old mice. The age-associated decline in func-
tionality of both VIP and GABAergic signaling could 
account for a loss in phase coherence within the old SCN 
neuronal network with the subsequent reduction in ampli-
tude of the output signal.

Phase Resetting

The effect of aging on the state of the SCN network may 
also explain part of the age-associated deficits in resetting 
and phase-shifting capacity of the circadian clock. One 
analogue example is the photoperiod-induced phase dis-
persion described in the SCN of animals exposed to a 
long-day photoperiod. Because of the phase dispersal, a 
light stimulus will reach the cells at different phases of 
their cycle. It is expected therefore that the phase shifting 
effect of light on the different cells will be diverse, and 
will lead to reduction in phase response of the population 
as a whole when compared to a more synchronized net-
work. Indeed, phase shifting response is diminished in 
animals exposed to long summer days and simulations 
confirmed that the degree of desynchronization among 
the neurons correlates with the phase shifting capacity of 
the ensemble (Vanderleest and others 2009).

In addition, neurotransmitters and neuromodulators 
more directly involved in photic information processing 
are also affected by age. The expression of PAC-1 
mRNA, a receptor mediating the PACAP-induced 
enhancement of glutamatergic signaling in retinohypo-
thalamic terminals of the SCN, is reduced in aged rats 
(Kallo and others 2004). Transporters and receptors of 
serotonin, which suppress the photic transmission in the 
SCN, are enhanced in the course of aging (Duncan and 
others 2000). And finally, mRNA expression of gastrin 
releasing peptide, which also modulates light-induced 
phase shifts of the circadian clock, is reduced in SCN of 
aged hamsters (Duncan and others 2010). Thus, age-
associated deficits in phase resetting and entrainment of 
the circadian clock seem to involve SCN network modi-
fications as well as alterations in photic information 
processing.

Cellular Physiology

Cell death is seemingly not the primary reason for the 
reduction in the amplitude of the SCN output signal and 
changes in neurotransmitter signaling effecting network 
properties are more likely contributors. The physiology 
of cells in the SCN on the other hand is also modified by 
aging and may play a role in age-related deficits in clock 
function (Aujard and others 2001; Satinoff and others 
1993). Electrophysiological recordings in brain slice of 
old mice revealed an increased fraction of silent cells 
(Nygard and others 2005) and a decrease in excitability of 
SCN neurons (Farajnia and others 2012) during the day. 
The regulation of action potential frequency in SCN neu-
rons is controlled by a number of ionic channels, among 
them two circadian controlled K+ conductances, which 
we recently studied in old mice (Fig. 3; Farajnia and oth-
ers 2012). The fast delayed rectifier K+ current (Itri and 
others 2005) and also the transient K+ current (Itri and 
others 2010) lost their circadian modulation in old SCN 
neurons, which is consistent with the diminished rhythm 
in neuronal activity (Fig. 2E). Importantly, not all ionic 
currents were affected by age. The slow delayed rectifier 
current was not altered in activation or current amplitude 
in old SCN neurons. The circadian rhythm in membrane 
potential, normally being depolarized during the day and 
hyperpolarized during the night, was also compromised 
in aged SCN neurons exhibiting depolarized night values 
(Fig. 2D; Farajnia and others 2012). The underlying 
conductance, regulating membrane potential in the SCN 
neuron, is not identified yet.

The decrease of the daily peak of the electrical rhythm 
observed in the single cell recordings and the increase of 
the trough caused by neurons active at the “wrong” phase 
at night, as found in subpopulation recordings, result in 
the dampened amplitude observed in the whole SCN 
ensemble. In general, the age-induced dampening of cir-
cadian rhythms of neuronal activity was greater on the 
cellular level compared to the whole SCN in vitro 
(Farajnia and others 2012) or in vivo (Nakamura and oth-
ers 2011) suggesting a compensatory role of the SCN 
network.

Putative Mechanisms of Age-
Associated Suprachiasmatic Nucleus 
Dysfunction

Aging affects SCN function mainly by altering synaptic 
transmission and network properties as well as modifying 
cellular physiology (Fig. 4). At the level of rhythm gen-
eration, elements of the molecular feedback loop seem to 
be sensitive to aging although the few reports on this 
issue have conflicting results. Some studies found robust 
rhythms in the expression of Period genes in old SCN 
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neurons (Asai and others 2001), while other studies report 
age-related disruption in Per2 mRNA (Weinert and oth-
ers 2001) as well as Clock and Bmal1 mRNA (Fig. 2F; 
Kolker and others 2003; Wyse and Coogan 2010). A 
recent study identified a reduction of sirtuins (SIRT1) 
expression together with a reduction in BMAL1 and 
CLOCK proteins in the SCN of old mice (Chang and 
Guarente 2013). SIRT1 activates the transcription of 
Clock and Bmal1 and SIRT1 deficient young mice 
showed age-typical changes in circadian behavior such as 
period lengthening, fragmented activity, and reduced 
entrainment capacity.

Among the intensely discussed potential causes of 
aging-related neuronal dysfunction is the oxidative stress 
and the increase of endogenous reactive oxygen/nitrogen 
species (ROS) in the aged brain. ROS is still considered 
as one of the factors that may inflict structural damage on 
various macromolecules and consequently on neuronal 
interactions and cellular properties (Dirksen 2002; but 
see Yeoman and others 2012). Among the targets for ROS 
are plasma membrane ionic channels and transporters, 
which are critical to preserve normal physiological cel-
lular functions (Annunziato and others 2002). Oxidation 
of K+ channels by ROS, for instance, has been shown as 
a major cause for loss of neuronal function (Sesti and oth-
ers 2010) could also underlie the age-associated change 
in K+ channel activity observed in SCN neurons. Another 
interesting influence of increased oxidative stress in 
aging involves the modification of intracellular Ca2+ 
homeostasis in neurons. In hippocampal cells, aging 
leads to increased Ca2+ entry through voltage-dependent 

channels and changes in ryanodin receptor–regulated 
Ca2+ stores lead to a chronic increase in baseline cytosolic 
Ca2+ concentration (Foster 2007). One of the conse-
quences is a decrease in excitability by increased activity 
of Ca2+-activated K+ currents. SCN neurons have similar 
mechanisms of Ca2+ regulation and the role of Ca2+-
activated K+ currents for excitability and circadian 
rhythms have been well documented. Whether these 
components are also affected by aging in the SCN is an 
intriguing question for future research.

Conclusions and Future Directions

Healthy aging is a natural but complex phenomenon that 
involves different levels within the organism. The age-
related changes in the circadian system lead to reduction 
of the amplitude, phase changes, as well as fragmenta-
tion in rhythms of behavior and physiology. The decay of 
the daily control of processes represents a risk factor for 
a number of diseases and can also aggravate symptoms 
of age-associated neurodegenerative diseases. The 
decline in amplitude of circadian rhythms can be traced 
back to decline in output signal of the central clock and 
further to age-induced alterations in neuronal network 
function, membrane properties and molecular compo-
nents of circadian pacemaker cells in the SCN. The 
understanding of the causal connections between differ-
ent parts of the circadian system affected by age and the 
knowledge of cellular and molecular targets may eventu-
ally help design new treatments aimed to alleviate age- 
and clock-related diseases. The challenges for future 
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Figure 4.  Hypothetical model for mechanism involved in aging-related decline in central circadian signal and function. Aging can 
lead to an increase in oxidative stress and cause modifications of K+ channel activity, Ca2+-homeostasis and gene expression in 
the suprachiasmatic nucleus (SCN). Other, more direct influence of aging on cellular components is also possible. The change in 
molecular expression and membrane properties lead to changes in excitability, synaptic activity and network modifications. The 
weaker network interactions and the reduced excitability result in decline of the circadian timing signal issued by the SCN. Light-
colored boxes indicate weak experimental evidence. Arrows show possible interactions (green = based on experimental results).
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research are to identify mechanisms of neuronal aging 
that go beyond today’s hypothesis of cell death and oxi-
dative stress. Neuronal network remodeling, changes in 
Ca2+ homeostasis, the role of senescent cells (Naylor and 
others 2013) and alterations in metabolic pathways (e.g., 
insulin/insulin-like growth factor signaling) are just a 
few directions worth following. Finally, the search for 
better animal models for healthy aging and age-associ-
ated neurodegenerative diseases needs to continue to 
facilitate research on the aged brain.
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